Quality Exclusives

Off Topic Quality: 3-D Imaging Software Helps Researchers Understand 19th Century Painting Techniques

The characterization of the porosity of ground layers in easel paintings: a first step towards understanding its role in water uptake, reactivity and material transport in 19th and early 20th century paintings.

Portrait of Max Leu (detail) by Cuno Amiet, 1899. The painter has achieved a matte surface in the area of the face.


The Swiss Institute for Art Research (SIK-ISEA) is studying the studio practice of Swiss painters of the late 19th early 20th century, the materials they used for their paintings, and the deterioration processes the paintings undergo as they age.

Among other issues this study is looking at the paintings’ grounds, which are mixtures of binding media, fillers and pigments applied to a suitable support as a preparation for painting. In particular it has set a focus on the possible connection between the porosity of grounds, their absorption characteristics, the overall appearance, and the stability of the paintings.

Many different recipes for the preparation of lean and relatively absorbent grounds can be found in technical sources written since the late 17th century. There are a number of reasons why most artists preferred them: They soak up some of the binding medium of the paint, thus shortening its drying process and resulting in a good adhesion between ground and paint. From the end of the 19th century onwards, the fact that absorbent grounds lead to brightly coloured and matte picture surfaces was very much appreciated by painters that had ceased to work in the academic style.

In attempting to characterise the degree of porosity or the capability of a ground to incorporate moisture, the study addresses a pressing conservation question: The presence of an absorbing layer within the painting build-up has important consequences for the painting’s stability. Issues of water-accelerated reactivity and moisture gradient-assisted material mobility within complex paint systems have been recognised but never studied. The characterisation of the structure of absorbent ground layers is a first step towards the study of the mobility of materials between layers.

Recent research at the art technology department of SIK-ISEA in collaboration with TOMCAT beamline at PSI Villigen has shown that X-ray tomography is a uniquely powerful method to study the internal structure in intact ground samples. The current research challenge is twofold and lies in (i) estimating precisely the distribution of voids and pores and the connectivity of the porosity network at a micrometer scale, and (ii) visualizing the impregnation and transport of moisture through the ground. The 3D tomographic data sets are being studied using the Avizo software, which enables visualization and quantitative analysis of the data sets by providing appropriate filtering algorithms and advanced segmentation tools.

For more information, visit www.avizo3d.com

Did you enjoy this article? Click here to subscribe to Quality Magazine. 

You must login or register in order to post a comment.

Multimedia

Videos

Podcasts

Karen Spencer, Clinkenbeard's quality manager, discusses what makes the plant stand out, advice for other plants, and looks to the future.
More Podcasts

Quality Magazine

CoverImage

2015 May

The May 2015 edition of Quality Magazine includes articles on cloud technologies, depth gages, ISO 9001, digital inspection and cool new products.

Table Of Contents Subscribe

Topics to Talk About

What topics would you like to see Quality cover more?
View Results Poll Archive

Clear Seas Research

qcast_ClearSeas_logo.gifWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

STAY CONNECTED

Facebook2015_40 twitter_40px.png  youtube_40px.pnglinkedin_40px.png  

eNewsletters