From the Editor

Chaos Theory

The most romantic way I have ever heard Chaos Theory described is, “there are patterns, and even great beauty, in seemingly chaotic events.” Formally, Chaos Theory is defined as a sub-discipline of mathematics that studies complex, or dynamic, systems.
These complex systems contain so many moving parts that it takes computers to calculate and model all of the movements of the system. In fact, it has been said that the emergence of this theory could not have happened without the invention and proliferation of the computer.
Up until what is called the Quantum Mechanical Revolution, “people believed that things were directly caused by other things.” In Latin it is referred to as post hoc ergo propter hoc, or after, therefore, because of it. In essence, if one thing follows another, it must have been caused by it.
It is the basis of Freudian psychoanalysis, “a belief that malfunctions in the mind are the results of traumas suffered in the past” and that Regression Therapy—pinpointing when and how these traumas occurred—would allow us to heal. It is called linear cause and effect.
Chaos Theory, however, tells us that it is less about linear effect and more the existence and production of patterns caused by many different forces, the most important of which are initial conditions, popularly referred to as The Butterfly Effect.
The Butterfly Effect posits that the flapping of a butterfly’s wings in South America could affect the weather in Texas, meaning that the smallest, seemingly inconsequential part of a system can have a huge effect on all the other parts. Simply said, “unless all factors can be accounted for, large systems would be impossible to predict with total accuracy because there are too many unknown variables to track.”
The study of Chaos Theory has helped us understand simple, or everyday, phenomena such as water boiling on a stove and complex events such as how birds migrate, how vegetation spreads and the structure of stars in the night sky, but its origins stem from the study of weather systems.
It all started in 1960 when Edward Lorentz created a weather-model on his computer at the Massachusetts Institute of Technology. Lorentz’s weather model consisted of an extensive array of complex formulas that successfully modeled, and later helped predict, the weather and turned a large, unpredictable system into one of those everyday phenomena, the daily weather forecast.
This month’s Quality continues in the tradition of Mr. Lorentz with Michelle Bangert’s analysis of our annual spending study, “Quality Spending Stays Strong,” and a roundtable discussion on the importance of the budget process titled, “The Budget Process Revealed.” Also, check out Genevieve Diesing’s feature, “A Closer Look at the Skills Gap.”
Enjoy and thanks for reading!

Did you enjoy this article? Click here to subscribe to Quality Magazine. 

Recent Articles by Darryl Seland

You must login or register in order to post a comment.




Karen Spencer, Clinkenbeard's quality manager, discusses what makes the plant stand out, advice for other plants, and looks to the future.
More Podcasts

Quality Magazine


2015 May

The May 2015 edition of Quality Magazine includes articles on cloud technologies, depth gages, ISO 9001, digital inspection and cool new products.

Table Of Contents Subscribe

Topics to Talk About

What topics would you like to see Quality cover more?
View Results Poll Archive

Clear Seas Research

qcast_ClearSeas_logo.gifWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.


Facebook2015_40 twitter_40px.png  youtube_40px.pnglinkedin_40px.png