This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Tensile testing of metals determines characteristics such as yield strength, yield point elongation (YPE), ultimate tensile strength, plastic strain ratio (r) value and the strain-hardening exponent (n) value. One common requirement needed for all these calculations is accurately measuring the strain of the material in question.
In practical terms, strain is a measurement of the deformation in a defined, uniform section of a test specimen-known as the gage section-as it is subjected to a load. Engineering strain is the extension divided by the original gage length; it is usually expressed as a percentage.