This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
The aerospace industry uses nondestructive testing (NDT) methods quite extensively. The structural integrity and safety of nearly all components, especially the most critical ones, needs to be validated and NDT plays a major role. NDT is required in virtually all areas of newly manufactured, serviced, repaired, or overhauled inspections.
Digitalization has changed our world as the internet and modern technology continue to shape the manufacturing industry. For example, the vision of Industry 4.0 shows that production systems and machines are required to be flexible and adapt with continuously changing manufactured products. That means production will be more individualized, flexible, and faster.
Our Introduction to Surface Roughness Measurement guidebook is an excellent initiation to noncontact surface roughness measurement. It offers practical information on various topics to help make roughness measurement easy and efficient.
Zygo Corporation has announced the introduction of its latest generation of ZeGage™ 3D optical profiling instruments providing precise and rapid non-contact measurement of surface topography for enhanced quality and process control.
Combining benchtop mechanical testing of smaller brake material samples with rapid 3D surface metrology makes it possible to analyze results more quickly than ever before.
Researching how different materials influence brake pad performance and durability involves a vast amount of back-and-forth testing and metrology analysis.
Each day, facilities across the globe turn to nondestructive testing (NDT) to verify the reliability of parts or materials without causing damage. One of the most popular of these methods is magnetic particle inspection (MPI)—a form of NDT that uses magnetism to detect surface and near-surface defects, cracks, seams or stress points in ferromagnetic materials before parts and materials are placed into service.
Beginning some 30 years ago, portable surface finish gages—some small enough to fit in a shirt pocket—brought a new level of part control to the manufacturing floor.