This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Quality Magazine logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Quality Magazine logo
  • Home
  • The Magazine
    • Current Issue
    • Digital Edition
    • Archives
    • How To Guide
    • Industry News
    • Subscribe
  • Web Exclusives
    • Blogs
    • NDT Exclusives
    • Quality Exclusives
    • Vision & Sensors
  • New Products
  • Channels
    • Management
    • Measurement
    • NDT
    • Quality 101
    • Software
    • Test & Inspection
    • Vision & Sensors
  • Markets
    • Aerospace
    • Automotive
    • Electronics
    • Energy
    • Green Manufacturing
    • Medical
    • Plastics
  • More
    • Leadership 100 Survey
    • Plant of the Year
    • Professional of the Year
    • Job Board
    • White Papers
    • Quality Store
    • Software Downloads
    • eCards
    • Product Spotlights
    • Industry Links
    • Sponsor Insights
    • Market Research
  • Multimedia
    • eNewsletter
    • Podcasts
    • Videos
    • Webinars
    • Showcases
    • Image Galleries
    • Interactive Spotlights
  • Events
    • IMTS
    • Event Calendar
    • Quality Show
  • InfoCenters
    • Manage Quality, Risk & Compliance
    • Material Science Quality within Microscopy
    • Modern Quality Control with SPC
    • Process Control in Manufacturing
  • Directories
    • Buyers Guide
    • NDT Sourcebook
    • Take a Tour
  • Contact
    • Contact Us
    • Advertise
Home » Simple Process Capability?

Simple Process Capability?

May 19, 2003
Reprints
No Comments
Manufacturing operations throughout the industry have ignored geometric bonus tolerances, caused by varying feature sizes, when assessing statistical process capability from variables data. Attribute gages, or hard gages, address the bonus tolerance physically but do not produce the variables data that is needed for statistical reporting. The problem thus far has been integrating the variable feature size with the geometric form, location or orientation deviation in a simple, effective method and reporting the process capability. A solution to this problem may be at hand.

Process capability assessments derived from variables data gaging devices -- electronic gages and coordinate measuring machines -- can be computed from the residual or remaining tolerance of a feature rather than the consumed tolerance. The residual tolerance (Rt) is equal to the sum of specified location or orientation tolerance plus the individual feature bonus tolerance less the individual measured form, location or orientation deviation.

The calculation is made by factoring the following tolerances:

T is the form, location or orienta-tion tolerance specified at its material condition.

Bt is the bonus tolerance, which is the difference between the feature's actual size and its material condition limit that relates to the tolerance modifier specified. The actual size is the orientation or location constrained within the actual mating envelope.

Ct is the consumed tolerance, the measured deviation for form, location or orientation.

The formula to do the calculation is:
Rt = T + Bt - Ct

The residual tolerance will equal the maximum available tolerance when the feature's bonus tolerance is maximized relative to its material condition modifier and is at its exact basic location. The material condition modifers include the maximum material condition (MMC), least material condition (LMC) and the regardless of feature size (RFS). Likewise, the residual tolerance will be zero when the feature's bonus tolerance is minimized relative to its material condition modifier or is at its worst location or orientation.

There are two process capability indices, Cp and Cpk. One measures the potential process containability, and the other measures the process containment within specification. Size and location are evaluated separately for process capability. It is important to evaluate each characteristic separately to monitor and maintain the process, but when the tolerance for the form, location or orientation is dynamic, meaning it is dependent on size, the traditional model doesn't fit. Designers that recognize the relationship and attempt to optimize the design by including the tolerance for location in the tolerance for size, for example, |O+|O0.0(M)|A|B|C|, are forced to recant the specification because the tools don't support a way to evaluate or control a specification with a tolerance band that is itself variable. The result of which, for the designer, is the undesired alternative to portion the tolerance between the individual parameters with respect to prevailing process limitations.

By computing the residual tolerance from the given value and the bonus, zero becomes the constant for computing the value for Cpk. The overall process capability ratio Cp, as it is computed today, disregards the potential bonus tolerance. To compare the full potential tolerance, the sum of the potential bonus and the specified tolerances must be compared to six standard deviation of the distribution. The charts and data demonstrate the differences in the current method of reporting the process capability indices and that of the residual tolerancing model.

Manufacturing operations will realize immediate benefits from evaluating process capabilities using residual tolerances. Tolerances of virtually all fastener clearance holes include a tolerance modifier that permits a bonus positional tolerance relative to size. By addressing the bonus tolerance given in the design, the capability indices immediately improve. Furthermore, process targets can be optimized relative to the variability of the individual parameters rather than being targeted to the center individually.

subscribe to Quality Magazine

Related Articles

Quality Software & Analysis: Calibration Made Simple

Simple Steps for Measuring and Ensuring ERP Success

Computed Radiography: Keep it Short and Simple

Simple Steps to VGR Implementation

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Mobile Help

More Videos

Popular Stories

Lean manufacturing

Lean In to 5S

Automation in manufacturing

Automated Metrology: Manufacturing Trend of the Future

RoyalPower

Royal Power Solutions Opens Innovation Center

ASNT

ASNT Annual Conference Brings NDT to Las Vegas

EdmundsED

Edmund Optics Announces 2019 Educational Award, Norman Edmund Award Recipients

Quality Leadership 100 Survey

Poll

Topics to Talk About

What topics would you like to see Quality cover more?
View Results Poll Archive

Products

Quality Brain Teasers: Real World Challenges to Build Your Manufacturing Skills (ebook)

Quality Brain Teasers: Real World Challenges to Build Your Manufacturing Skills (ebook)

Assessments and Training in the following areas...

See More Products

SoftwareDownloads

Quality Magazine

Quality December 2019

2019 December

Check out the December 2019 edition of Quality: Quality 4.0 for medical device manufacturing, automated metrology, gage trends, plastics, materials analysis and much more!
View More Create Account
  • Resources
    • Market Research
    • Custom Content & Marketing Services
    • List Rental
    • Partners
    • Manufacturing Group
    • Polls
    • Privacy Policy
    • Survey and Sample
  • Want More
    • Connect

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing