This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Quality Magazine logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Quality Magazine logo
  • Home
  • The Magazine
    • Current Issue
    • Digital Edition
    • Archives
    • How To Guide
    • Industry News
    • Subscribe
  • Web Exclusives
    • Blogs
    • NDT Exclusives
    • Quality Exclusives
    • Vision & Sensors
  • New Products
  • Channels
    • Management
    • Measurement
    • NDT
    • Quality 101
    • Software
    • Test & Inspection
    • Vision & Sensors
  • Markets
    • Aerospace
    • Automotive
    • Electronics
    • Energy
    • Green Manufacturing
    • Medical
    • Plastics
  • More
    • Leadership 100 Survey
    • Plant of the Year
    • Professional of the Year
    • Job Board
    • White Papers
    • Quality Store
    • Software Downloads
    • eCards
    • Product Spotlights
    • Industry Links
    • Sponsor Insights
    • Market Research
  • Multimedia
    • eNewsletter
    • Podcasts
    • Videos
    • Webinars
    • Showcases
    • Image Galleries
    • Interactive Spotlights
  • Events
    • IMTS
    • Event Calendar
    • Quality Show
  • InfoCenters
    • Manage Quality, Risk & Compliance
    • Material Science Quality within Microscopy
    • Modern Quality Control with SPC
    • Process Control in Manufacturing
  • Directories
    • Buyers Guide
    • NDT Sourcebook
    • V&S Sourcebook
    • Take a Tour
  • Contact
    • Contact Us
    • Advertise
Home » Digital Transformation and IoT comes to Eddy Current Testing
NDT

Digital Transformation and IoT comes to Eddy Current Testing

Managers can now capitalize on the data and be more responsive to production issues as they arise.

Digital transformation

Figure 1. Digital transformation and IoT are driving changes in how eddy current testing systems are being designed and implemented.

April 2, 2018
Dan DeVries
KEYWORDS data analysis / data management / digital transformation / eddy current / Internet of Things
Reprints
No Comments

Digital transformation is a competitive technology and business strategy that leverages data gathering to drive business efficiencies, new revenue growth, and new business models. It is a strategy being adopted by companies of all sizes and geographies. It is particularly useful to manufacturing companies that use data to monitor and adjust processes, improve quality, increase service efficiencies, and increase productivity.

One driver of this transformation is the availability of low-cost data storage and processing power on cloud platforms such as Microsoft Azure and Amazon Web Services. These pay-as-you-go service platforms have eliminated the need for companies to build and manage their own data centers. Most modern corporate management software systems, such as enterprise resource planning (ERP), are now cloud-based, which facilitates integration of additional cloud-based technologies.

Another big driver is the rapid growth of the Internet of Things (IoT). According to industry analyst Gartner, there will be over 20 billion “things” connected to the internet by 2020 (www.gartner.com/newsroom/id/3165317). Internet connected devices on the factory floor used to consist of simple temperature or vibration sensors sitting on a motor. A trend toward edge computing, which is processing data close to the source, is leading to the development of complex quality measurement systems that are integrated into production lines. This serves to minimize data traffic and increase real-time data processing.

Digital transformation also considers how we will use the data collected. Early quality systems were isolated, and often just activated a light pole and simple sorting device. Now smart systems are able to talk to each other, and deliver information to computers, tablets, and mobile devices being used by workers of diverse backgrounds.

eddy current

Figure 2. Connectivity of an Eddy Current Device

Impact on Eddy Current System Design

What does this have to do with eddy current testing? To answer that question, look at some of the first eddy current systems used for production testing. These were analog-based systems that used analog circuitry to find material anomalies. These systems lacked the ability to integrate with a light pole or PLC, and they may have had only a simple alarm output for I/O switch closure used to activate a sorter on a production line.

Now fast forward a few decades. Today’s eddy current instruments use digital circuitry, both to create the eddy current drive signals and to process the return signals. High-speed digital signal processing (DSP) circuits, coupled with dedicated microprocessors, make it easy to create and process multi-frequency inspections at production line rates. In addition, test results can be recorded and associated to each manufactured component, providing part-to-part quality accountability. Most importantly, modern eddy current units can be connected to the Local Area Network (LAN), allowing managers to capitalize on the data and be more responsive to production issues as they arise.

Eddy Current Instrument Connectivity

A simplified block diagram of a modern connected eddy current instrument can be seen in figure 2. The instrument can operate as a standalone unit, or be connected to share data—such as eddy current signals, test parameters, alarm status—in various ways. Connection to the factory LAN can occur via Ethernet, wired or wireless. The data can also be delivered to a PLC on the production line, while discrete I/O connection can be used to drive mechanical sorting units.

eddy current

Figure 3. Eddy Current Factory Installation

Multiple devices can be linked together to serve as a multi-channel eddy current system. The individual devices can also be spread across a production line or the entire factory and interconnected via factory Ethernet. In addition, all the data can be stored and processed in the factory quality or manufacturing systems. Figure 3 shows a factory setup with single eddy current instruments on two lines, and multiple eddy current instruments on the other line.

Network Requirements

Devices on the factory floor are typically connected using dedicated “real-time” LANs. Connections may be made via wired Ethernet, wireless Ethernet, or other physical layer protocols. Such LANs are partially or fully isolated from other networks, in order to fulfill real-time networking requirements. Here are key requirements for a real-time network:

1. Reliability. Isolating the network from other networks reduces the possibility of outside network traffic or external system failures affecting the reliability and performance of the private real-time network.

2. Guaranteed minimum real-time latency. Introducing network traffic from other sources can cause communication delays with an open-ended latency, i.e. the worst case delay cannot be predicted. It is also important to configure the network in full duplex mode, data transmitted in both directions at the same time on the same line (using switches instead of hubs, etc.), in order to avoid messaging collisions that cause indeterminate latency.

3. Security. The corporate IT department typically isolates their “corpnet” from the factory floor. This can be accomplished by complete isolation, or by using a proxy server to carefully filter traffic between the corpnet and the factory floor real-time network. Perhaps even more important is partial or full isolation from the public internet.

User Experience/Interface

As digital transformation drives an increase in system complexity, and the factory workforce increases in diversity, it becomes critical to create easy-to-use and easy-to-implement systems. User interfaces must be designed for multiple users of varying ability.

Conclusion

Digital transformation and IoT are driving changes in how eddy current testing systems are being designed and implemented. Eddy current and other instrument developers are focusing on communication, modularity, data processing and ease of use when developing new systems. This will enable factories to increase their standards of quality, and drive efficiencies and revenue growth.

subscribe to Quality Magazine

Recent Articles by Dan DeVries

Perfecting Your Manufacturing Eddy Current Test

Must Inspect with Eddy Current

Demystifying Eddy Current Heat Treat Verification

Nondestructive Flaw Detection in Metallic Components

Dan DeVries is a senior marketing consultant with Wild Horse Strategies.

Related Articles

Perfecting Your Manufacturing Eddy Current Test

Automated Eddy Current Testing Supports Growing Trend toward "In-Process" Inspection

Going Green with Eddy Current Testing

Must Inspect with Eddy Current

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Mobile Help

More Videos

Popular Stories

Speaking of Quality

No More Hamburger Helper

Lean manufacturing

Lean In to 5S

Quality cost chart

Prevention is the Key to Reduced Quality Costs

The Cost of Quality

Understanding How Management Involvement Impacts the Risk of Quality Cost

ASNT

ASNT Annual Conference Brings NDT to Las Vegas

Quality Leadership 100 Survey

Poll

Topics to Talk About

What topics would you like to see Quality cover more?
View Results Poll Archive

Products

Quality Brain Teasers: Real World Challenges to Build Your Manufacturing Skills (ebook)

Quality Brain Teasers: Real World Challenges to Build Your Manufacturing Skills (ebook)

Assessments and Training in the following areas...

See More Products

SoftwareDownloads

Quality Magazine

Quality December 2019

2019 December

Check out the December 2019 edition of Quality: Quality 4.0 for medical device manufacturing, automated metrology, gage trends, plastics, materials analysis and much more!
View More Create Account
  • Resources
    • Market Research
    • Custom Content & Marketing Services
    • List Rental
    • Partners
    • Manufacturing Group
    • Polls
    • Privacy Policy
    • Survey and Sample
  • Want More
    • Connect

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing