This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Quality Magazine logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Quality Magazine logo
  • Home
  • The Magazine
    • Current Issue
    • Digital Edition
    • Archives
    • How To Guide
    • Industry News
    • Subscribe
  • Web Exclusives
    • Blogs
    • NDT Exclusives
    • Quality Exclusives
    • Vision & Sensors
  • New Products
  • Channels
    • Management
    • Measurement
    • NDT
    • Quality 101
    • Software
    • Test & Inspection
    • Vision & Sensors
  • Markets
    • Aerospace
    • Automotive
    • Electronics
    • Energy
    • Green Manufacturing
    • Medical
    • Plastics
  • More
    • Leadership 100 Survey
    • Plant of the Year
    • Professional of the Year
    • Job Board
    • White Papers
    • Quality Store
    • Software Downloads
    • eCards
    • Product Spotlights
    • Industry Links
    • Sponsor Insights
    • Market Research
  • Multimedia
    • eNewsletter
    • Podcasts
    • Videos
    • Webinars
    • Showcases
    • Image Galleries
    • Interactive Spotlights
  • Events
    • IMTS
    • Event Calendar
    • Quality Show
  • InfoCenters
    • Manage Quality, Risk & Compliance
    • Material Science Quality within Microscopy
    • Modern Quality Control with SPC
    • Process Control in Manufacturing
  • Directories
    • Buyers Guide
    • NDT Sourcebook
    • V&S Sourcebook
    • Take a Tour
  • Contact
    • Contact Us
    • Advertise
Home » Total Surface Visualization for Geometric Dimensioning and Tolerancing (GD&T)
SoftwareQuality 101

Total Surface Visualization for Geometric Dimensioning and Tolerancing (GD&T)

DEPT101_sl1
Figure 1. (a) CMM vs. (b) tunable laser holographic interferometry measurement on engine head deck face. Source: Coherix
DEPT101_sl2
Figure 2. Total surface visualization on multiple surfaces of an engine head to deck face datum. Source: Coherix
DEPT101_sl1
DEPT101_sl2
June 1, 2015
Zhenhua Huang
KEYWORDS GD&T / Product Design
Reprints
No Comments

In mass-production industries, it has been realized that Product Design (PD) departments and Manufacturing Engineering (ME) departments under the same organization show quite different interests in the same product line. PD cares more about product performance. However the profound knowledge on the relationship between product tolerances and product performance gradually gets lost through generations and evolvement of product development. As a result, PD tends to put on the same or similar critical tolerances as new products continue to be developed, which in some cases should be tightened for required performance or can be relaxed for lower manufacturing cost.

Whereas ME is more interested in throughput that meets the specs. However, specs tend to be interpreted in a traditional and easy way that ME feels more comfortable with unless instructed differently by the PD and quality departments. This leads to some quality chasms that can cause unnecessary downstream operations and possible expensive quality problems. The emergence of micron-accurate optical inspection technologies to enable total surface visualization on critical mating surfaces provides an unbiased link across different departments within the organization and between manufacturers and suppliers to prevent quality issues from passing through the product life cycle.

Flatness, by GD&T definition1 and ISO2 standards, is the distance between two parallel planes to enclose all produced features. Here, “all” produced materials on the specified surface must be counted for flatness by definition because “all” produced materials contribute to the functionality by design, which is assumed reasonable. Same applies to other surface GD&T specs, such as profile, parallelism, waviness, etc. However, when it comes to merging theory with reality, due to the demand for productivity and a limitation of metrology technologies available at the time, traditionally, these surface specs are inspected at very limited surface sampling rate. Over time, this practice has been widely accepted by the industry as a standard, and eventually becomes a mentality.

The recently emerged tunable laser holographic interferometry technology3, originated from Ann Arbor, Michigan, provides a unique capability of micron-accurate total surface visualization on precision machined prismatic surfaces in minutes. Compared to other traditional interferometry technologies, which use a single wavelength that limits their height measurement range no more than half of wavelength, it utilizes a tunable laser to achieve up to 24mm height measurement range in micron-level accuracy across a 150mm x 150mm (or 280mm x 280mm) field of view in one data capturing cycle. Its recent development on lateral multi-view stitching? for parts larger than the field of view and multi-surface relationship by utilizing artifacts to extend its measurement range from only one side of the part to multiple sides significantly enhances its practical use by industry.

Figure 1 shows a comparison between (a) traditional measurement technology (coordinate measurement machine - a common practice by the industry today), and (b) tunable laser holographic interferometry technology on the same automotive engine head deck face. By design, engine heads and engine blocks are assembled together on the deck face to build an enclosed combustion chamber for each cylinder. Flatness at global and local scale, and micro surface texture such as waviness on entire deck face, are critical to an engine’s sealing performance. However, traditional measurement only provides about 15,000 points for more than nine minutes to cover about 1% of the entire deck face. In comparison, a 99% surface coverage with over 2,400,000 points can be provided by new technology in less than four minutes. This does not only provide the capability for industry to measure to specs,but also enables total surface visualization for any possible quality negligence by traditional inspection technologies.

Figure 2 shows the tunable laser holographic interferometry measurement of multiple surfaces (cam rail, cam cap joint, bolt hole tops, spark plug tops, and a few others), all on the top side of the engine head with respect to the deck face as the datum. This measurement is acquired by using external references to build up a relationship between opposite sides of the part. The color variation on each surface indicates deviation from its respective nominal profile, with respect to the datum of deck face. This again provides industry the capability to measure to specson critical multiple surface relationship.

 In conclusion, the GD&T surface specs such as flatness, parallelism, and profile are on the entirefunctional surface by definition but traditional practice in industry has been developed into discrete low surface sampling due to the limitation of the inspection technologies available at the time. The emergence of new optical precision inspection technologies provides industry the capability to measure to specswith total surface visualization information that helps prevent expensive quality problems.

References

[1].   James D Meadows, Geometric Dimensioning and Tolerancing, 1995

[2].    ISO 1101:2004

[2].    Carl Alexoff, Multi-Wavelength Digital Holographic Metrology, Proc. SPIE 6311, Optical Information Systems IV, 63111D, August 30, 2006

[3].     Zhenhua Huang, Albert Shi, and Jun Ni, Laser Interferometry Hologram Registration for Three-Dimensional Precision Measurements, Journal of Manufacturing Science and Engineering, Vol. 128, 2006

subscribe to Quality Magazine

Recent Articles by Zhenhua Huang

Inspection Technology Review for Automotive Bead Dispensing Process

Dr. Zhenhua Huang is the product manager of ShaPix Laser Holographic Interferometry platform at Coherix. Dr. Huang received his PhD in Mechanical Engineering from the University of Michigan in 2006 and since then has led several advanced R&D projects at Coherix in collaboration with universities and automotive industries. Dr. Huang has published more than 10 peer-reviewed technical papers and owns one US patent. For more information, visit www.coherix.com.

Related Articles

Inspection Technology Review for Automotive Bead Dispensing Process

3-D Model-Based GD&T for Inspection

GD&T, Manufacturing Imperative

Empowering GD&T

Related Directories

Metrologic Group Services Inc.

TrueGage

InnovMetric Software Inc.

Symphony Technologies

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Mobile Help

More Videos

Popular Stories

Speaking of Quality

No More Hamburger Helper

Lean manufacturing

Lean In to 5S

Quality cost chart

Prevention is the Key to Reduced Quality Costs

The Cost of Quality

Understanding How Management Involvement Impacts the Risk of Quality Cost

ASNT

ASNT Annual Conference Brings NDT to Las Vegas

Quality Leadership 100 Survey

Poll

Topics to Talk About

What topics would you like to see Quality cover more?
View Results Poll Archive

Products

Quality Brain Teasers: Real World Challenges to Build Your Manufacturing Skills (ebook)

Quality Brain Teasers: Real World Challenges to Build Your Manufacturing Skills (ebook)

Assessments and Training in the following areas...

See More Products

SoftwareDownloads

Quality Magazine

Quality December 2019

2019 December

Check out the December 2019 edition of Quality: Quality 4.0 for medical device manufacturing, automated metrology, gage trends, plastics, materials analysis and much more!
View More Create Account
  • Resources
    • Market Research
    • Custom Content & Marketing Services
    • List Rental
    • Partners
    • Manufacturing Group
    • Polls
    • Privacy Policy
    • Survey and Sample
  • Want More
    • Connect

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing