This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Medical devices, both the actual equipment and patient hardware, are some of the most regulated items in all of industry. Medical manufacturers are held to the highest of standards and these typically equal, and can even exceed, the aerospace and nuclear sectors.
The technology of nondestructive testing has experienced phenomenal growth over the past two decades and it is expected that this growth will continue for the foreseeable future.
Today there are over 3,500 different grades of steel. In fact, steel is one of the world’s most innovative and essential materials for manufacturing, building and construction.
The COVID-19 pandemic has disrupted our daily lives on an unprecedented global scale. The need to alter our way of life to try to mitigate and contain the virus has made us press pause on everything we take for granted, from visiting family and friends to travelling to work and business continuity.
All objects—from toothbrushes to umbrellas to the components of a space shuttle—experience forces throughout their lifecycles. In performing everyday actions like tying a shoelace or ripping open a package, we all exert forces without even realizing it.
If you take time to understand these definitions, standards and testing methods, you’ll be able to determine the accuracy of CT in your specific application.
I often hear, “How accurate can this be measured using CT?” For CT accuracy and precision should be considered together. For accuracy versus precision, picture a target.
Conversations around quality in metal additive manufacturing often focus on the flashy application of high-frequency, in situ, real-time monitoring systems and the neural networks or machine learning required for map-reduction of the mountains of data generated. There is, however, an often-overlooked aspect of consistently making high-quality parts: calibration.