This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Quality Magazine logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Quality Magazine logo
  • Home
  • The Magazine
    • Current Issue
    • Digital Edition
    • Archives
    • How To Guide
    • Industry News
    • Subscribe
  • Web Exclusives
    • Blogs
    • NDT Exclusives
    • Quality Exclusives
    • Vision & Sensors
  • New Products
  • Channels
    • Management
    • Measurement
    • NDT
    • Quality 101
    • Software
    • Test & Inspection
    • Vision & Sensors
  • Markets
    • Aerospace
    • Automotive
    • Electronics
    • Energy
    • Green Manufacturing
    • Medical
    • Plastics
  • More
    • Leadership 100 Survey
    • Plant of the Year
    • Professional of the Year
    • Job Board
    • White Papers
    • Quality Store
    • Software Downloads
    • eCards
    • Product Spotlights
    • Industry Links
    • Sponsor Insights
    • Market Research
  • Multimedia
    • eNewsletter
    • Podcasts
    • Videos
    • Webinars
    • Showcases
    • Image Galleries
    • Interactive Spotlights
  • Events
    • IMTS
    • Event Calendar
    • Quality Show
  • InfoCenters
    • Manage Quality, Risk & Compliance
    • Material Science Quality within Microscopy
    • Modern Quality Control with SPC
    • Process Control in Manufacturing
  • Directories
    • Buyers Guide
    • NDT Sourcebook
    • V&S Sourcebook
    • Take a Tour
  • Contact
    • Contact Us
    • Advertise
Home » Case Studies: Racing for Surface Finish

Case Studies: Racing for Surface Finish

August 1, 2004
Reprints
No Comments

Del West USA Inc. (Valencia, CA) manufactures high-performance components for automotive racing engines. Its customers require 100% inspection, which contributes significantly to the company's manufacturing costs. Del West recently reduced that cost dramatically and improved the repeatability of its measurements by adopting an optically-based inspection technique for surface finish.

In auto racing, performance and reliability are the keys to success. A Formula One engine may cost a half million dollars and only have to run for a few hundred miles, but during those miles it must offer peak performance every time. The cost of failure is too high to allow anything into the engine without absolute confidence that it conforms to design specifications. Because of this, the race teams demand 100% inspection and start-to-finish documentation of all phases of the manufacturing process. Suppliers must satisfy their demand and still make a profit.

Racing engines reach speeds of 18,000 rpm and surface finish plays a crucial role in determining the wear characteristics of products in this extreme environment. Traditionally, the company characterized surface finish by measuring average roughness (Ra) with a contact profilometer. While widely accepted as an industry standard, profilometer measurements do not work as well in this particular application. These tools are relatively slow at 15 to 60 seconds per measurement. The 2-D sample trace is not truly representative of the three-dimensional surface and introduces sampling errors and

measurement-to-measurement variability. Stylus wear introduces longer-term variability that is difficult to quantify. The instruments are susceptible to environmental interferences, such as vibration, and generally are not suitable for installation on the shop floor. In high-volume use, annual consumable costs to replace worn and broken styli can equal the initial cost of the system.

In an effort to address these shortcomings, and ultimately reduce inspection costs, Del West engineers adopted a noncontact, optically-based measurement technology called LaserCheck from Corning Tropel (Fairport, NY). The technology is based on the scattering of light reflected from a rough surface. It is intuitively easy to accept that light will scatter more from a rough surface than from a smooth one. A laser pointer reflected from a mirror onto a wall will show a well-formed image of the beam. Do the same from progressively rougher surfaces and the images become increasingly diffuse. The LaserCheck uses a quantitative implementation of this same principle to characterize surface roughness.

On a practical level, the LaserCheck addressed all of the company's concerns with contact profilometry. Measurements are completed in about a tenth of a second. The sample area, approximately 2 millimeters by 4 millimeters, more accurately represents the measured surface and yields better measurement repeatability. There are no wearing parts, eliminating that as a source of error and also eliminating consumable costs. The system is robust; the handheld measurement head can be dropped to the floor without damage. Vibration does not interfere with the measurement.

The LaserCheck's scatterometry measurements are relative measurements specific to the particular material and manufacturing process of the sample surface. Thus the company continues to use contact profilometry to provide an absolute characterization of the surface finish. However, the LaserCheck has allowed the company to reduce per-measurement costs significantly by reducing labor, and consumable and depreciation expenses. In addition, the feedback loop in the process control has been reduced by moving the measurement on to the shop floor where the process occurs. As a result, fewer bad parts are made and those that are produced are caught earlier in the process-before additional investments in time and money are made. In the end, better products are made for less money, customers get the 100% inspection they require and the company can remain competitive and profitable.

Corning Tropel

(585) 388-3500



Sidebar: Benefits

• Measurements are completed in about a tenth of a second.

• A sample area of approximately 2 millimeters by 4 millimeters more accurately represents the measured surface and yields better measurement repeatability.

• There are no wearing parts, eliminating that as a source of error and also eliminating consumable costs.

subscribe to Quality Magazine

Related Articles

Test & Inspection: Improve Surface Finish Measurement for Aerospace Manufacturing

Custom Surface Finish Gages for Hard to Reach Places

Using CMMs for Surface Finish Measurement

Skimming the Surface of Surface Finish

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Mobile Help

More Videos

Popular Stories

Speaking of Quality

No More Hamburger Helper

Guest Column

Why is it (quality) so hard?

Lean manufacturing

Lean In to 5S

Quality cost chart

Prevention is the Key to Reduced Quality Costs

The Cost of Quality

Understanding How Management Involvement Impacts the Risk of Quality Cost

BuyersGuide


Poll

Topics to Talk About

What topics would you like to see Quality cover more?
View Results Poll Archive

Products

Quality Brain Teasers: Real World Challenges to Build Your Manufacturing Skills (ebook)

Quality Brain Teasers: Real World Challenges to Build Your Manufacturing Skills (ebook)

Assessments and Training in the following areas...

See More Products

SoftwareDownloads

Quality Magazine

Quality December 2019

2019 December

Check out the December 2019 edition of Quality: Quality 4.0 for medical device manufacturing, automated metrology, gage trends, plastics, materials analysis and much more!
View More Create Account
  • Resources
    • Market Research
    • Custom Content & Marketing Services
    • List Rental
    • Partners
    • Manufacturing Group
    • Polls
    • Privacy Policy
    • Survey and Sample
  • Want More
    • Connect

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing