This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
With the advancements of many manufacturing processes, computed tomography (CT) and digital radiography (DR) are continuing to expand into new sectors of nearly all industries. Historically, these nondestructive testing (NDT) methods were primarily used for inspection of critical components, however, we are seeing an increasing number of companies extensively applying these technologies beyond just inspection work.
AM production enables the creation of parts not possible with traditional technologies through new design concepts, new materials, and new applications, but still presents challenges.
Additive manufacturing (AM) technologies continuously blaze the trail of what’s possible for part design. As such, reliably and accurately inspecting the latest parts has become increasingly complex.
Many components and assemblies have internal features that are difficult to inspect, none more so than additively manufactured parts. Conventional quality control requires samples to be sectioned and subsequently scrapped.
Industrial X-ray Imaging Technology is now more accessible than ever. Industrial X-ray Imaging is no longer a tool only useful for a small handful of applications.
If you take time to understand these definitions, standards and testing methods, you’ll be able to determine the accuracy of CT in your specific application.
I often hear, “How accurate can this be measured using CT?” For CT accuracy and precision should be considered together. For accuracy versus precision, picture a target.
Every business or service today has some form of quality control or quality assurance. With such high market competition, quality has become the market differentiator for almost all products and services.
Coordinate measuring machines (CMMs), vision systems, the trusty micrometer—no manufacturer would argue the importance of traditional dimensional metrology equipment, but the fact remains that the tried and true sometimes comes up lacking.
In the automotive industry, quality control/assurance has often focused on the physical testing and evaluation of raw materials and finished products. From a safety perspective, it is imperative that the strength of these materials and products meets established standards. Tensile, compression, bending and hardness tests are used for these evaluations.
Medical device implants have become increasingly more complex over time as technology has progressed into providing a new way of construction by the means of 3D printing, also known as additive manufacturing.
The Quality Show is a 3-day tradeshow dedicated to connecting quality manufacturing professionals with process improvement vendors for all things QUALITY.